Integrating independent component analysis and support vector machine for multivariate process monitoring

نویسندگان

  • Chun-Chin Hsu
  • Mu-Chen Chen
  • Long-Sheng Chen
چکیده

Article history: Received 10 November 2008 Received in revised form 8 December 2009 Accepted 30 March 2010 Available online 2 April 2010

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Intelligence-Based Model for Supplier Selection Integrating Data Envelopment Analysis and Support Vector Machine

The importance of supplier selection is nowadays highlighted more than ever as companies have realized that efficient supplier selection can significantly improve the performance of their supply chain. In this paper, an integrated model that applies Data Envelopment Analysis (DEA) and Support Vector Machine (SVM) is developed to select efficient suppliers based on their predicted efficiency sco...

متن کامل

Reconstruction-based fault prognosis for flue gas turbines with independent component analysis

Online detection and prognosis are very important for the safe operation of flue gas turbines. Compared with univariate monitoring of the process, multivariate process monitoring is more effective and can capture abnormal situation in the early stage. This paper proposes a new multivariate fault prognosis framework for the flue gas turbine with a hidden fault process based on independent compon...

متن کامل

Modeling and analysis of leishmaniasis distribution process using multilayer perceptron neural network and support vector regression (Case study: villages of Isfahan province)

Villages located in Isfahan province are one of the areas prone to the spread of cutaneous leishmaniasis, which is characterized by the occurrence of wounds on the skin. To predict the future prevalence of cutaneous leishmaniasis, Continuous monitoring of the spatial distribution of this disease is essential. Disease modeling was performed using two machine learning algorithms called support ve...

متن کامل

Online Statistical Monitoring and Fault Classification of the Tennessee Eastman Challenge Process Based on Dynamic Independent Component Analysis and Support Vector Machine

This paper presents a new online statistical monitoring based on dynamic independent component analysis (DICA) to detect the Tennessee Eastman challenge process faults. The proposed method employs dynamic feature extraction approach to capture most of the inherent dynamic fault information. This leads to an efficient fault detection with superior performance compared to independent component an...

متن کامل

A Hybrid ICA-SVM Approach for Determining the Quality Variables at Fault in a Multivariate Process

The monitoring of a multivariate process with the use of multivariate statistical process control MSPC charts has received considerable attention. However, in practice, the use of MSPC chart typically encounters a difficulty. This difficult involves which quality variable or which set of the quality variables is responsible for the generation of the signal. This study proposes a hybrid schemewh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & Industrial Engineering

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2010